Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of SDSS J022932.28+713002.7, a nascent extremely low-mass (ELM) white dwarf (WD) orbiting a massive (>1M⊙at 2σconfidence) companion with a period of 36 hr. We use a combination of spectroscopy, including data from the ongoing fifth-generation Sloan Digital Sky Survey (SDSS-V), and photometry to measure the stellar parameters of the primary pre-ELM WD. The lightcurve of the primary WD exhibits ellipsoidal variation, which we combine with radial velocity data andPHOEBEbinary simulations to estimate the mass of the invisible companion. We find that the primary WD has massM1= M⊙and the unseen secondary has massM2= M⊙. The mass of the companion suggests that it is most likely a near-Chandrasekhar-mass WD or a neutron star. It is likely that the system recently went through a Roche lobe overflow from the visible primary onto the invisible secondary. The dynamical configuration of the binary is consistent with the theoretical evolutionary tracks for such objects, and the primary is currently in its contraction phase. The measured orbital period puts this system on a stable evolutionary path which, within a few gigayears, will lead to a contracted ELM WD orbiting a massive compact companion.more » « less
-
ABSTRACT J191213.72 − 441045.1 is a binary system composed of a white dwarf and an M-dwarf in a 4.03-h orbit. It shows emission in radio, optical, and X-ray, all modulated at the white dwarf spin period of 5.3 min, as well as various orbital sideband frequencies. Like in the prototype of the class of radio-pulsing white dwarfs, AR Scorpii, the observed pulsed emission seems to be driven by the binary interaction. In this work, we present an analysis of far-ultraviolet spectra obtained with the Cosmic Origins Spectrograph at the Hubble Space Telescope, in which we directly detect the white dwarf in J191213.72 − 441045.1. We find that the white dwarf has a temperature of Teff = 11485 ± 90 K and mass of 0.59 ± 0.05 M⊙. We place a tentative upper limit on the magnetic field of ≈50 MG. If the white dwarf is in thermal equilibrium, its physical parameters would imply that crystallization has not started in the core of the white dwarf. Alternatively, the effective temperature could have been affected by compressional heating, indicating a past phase of accretion. The relatively low upper limit to the magnetic field and potential lack of crystallization that could generate a strong field pose challenges to pulsar-like models for the system and give preference to propeller models with a low magnetic field. We also develop a geometric model of the binary interaction which explains many salient features of the system.more » « less
-
ABSTRACT Two recently discovered white dwarfs, WD J041246.84 + 754942.26 and WD J165335.21 − 100116.33, exhibit Hα and Hβ Balmer line emission similar to stars in the emerging DAHe class, yet intriguingly have not been found to have detectable magnetic fields. These white dwarfs are assigned the spectral type DAe. We present detailed follow-up of the two known DAe stars using new time-domain spectroscopic observations and analysis of the latest photometric time-series data from TESS and ZTF. We measure the upper magnetic field strength limit of both stars as B < 0.05 MG. The DAe white dwarfs exhibit photometric and spectroscopic variability, where in the case of WD J041246.84 + 754942.26 the strength of the Hα and Hβ emission cores varies in antiphase with its photometric variability over the spin period, which is the same phase relationship seen in DAHe stars. The DAe white dwarfs closely cluster in one region of the Gaia Hertzsprung–Russell diagram together with the DAHe stars. We discuss current theories on non-magnetic and magnetic mechanisms which could explain the characteristics observed in DAe white dwarfs, but additional data are required to unambiguously determine the origin of these stars.more » « less
-
ABSTRACT Cataclysmic variables (CVs) that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. While population synthesis models predict that around 40–70 per cent of the Galactic CVs are post-period minimum systems referred to as ‘period bouncers’, only a few dozen confirmed systems are known. We report the study and characterization of a new eclipsing CV, SRGeJ041130.3+685350 (SRGeJ0411), discovered from a joint SRG/eROSITA and ZTF programme. The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs. We obtained optical high-speed photometry to confirm the eclipse of SRGeJ0411 and determine the orbital period to be Porb ≈ 97.530 min. The spectral energy distribution suggests that the donor has an effective temperature of ≲ 1800 K. We constrain the donor mass with the period–density relationship for Roche lobe-filling stars and find that Mdonor ≲ 0.04 M⊙. The binary parameters are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer. The optical emission lines of SRGeJ0411 are single-peaked despite the system being eclipsing, which is typically only seen due to stream-fed accretion in polars. X-ray spectroscopy hints that the white dwarf in SRGeJ0411 could be magnetic, but verifying the magnetic nature of SRGeJ0411 requires further investigation. The lack of optical outbursts has made SRGeJ0411 elusive in previous surveys, and joint X-ray and optical surveys highlight the potential for discovering similar systems in the near future.more » « less
-
Abstract Magnetic cataclysmic variables (CVs) are luminous Galactic X-ray sources, which have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope on board the Spektr-RG mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility and discovered two new magnetic CVs. We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is eFEDS J085037.2+044359/ZTFJ0850+0443, an eclipsing polar with orbital period P orb = 1.72 hr and WD mass M WD = 0.81 ± 0.08 M ⊙ . We suggest that eFEDS J085037.2+044359/ZTFJ0850+0443 is a low magnetic field strength polar, with B WD ≲ 10 MG. We also discovered a non-eclipsing polar, eFEDS J092614.1+010558/ZTFJ0926+0105, with orbital period P orb = 1.47 hr and magnetic field strength B WD = 36–42 MG.more » « less
-
null (Ed.)ABSTRACT WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3–5 $$\mu$$m flux since 2018. Follow-up Spitzer photometry reveals that emission from the disc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production.more » « less
-
ABSTRACT This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs.more » « less
-
Abstract The DESI Milky Way Survey (MWS) will observe ≥8 million stars between 16 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy’s 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public (Available at https://data.desi.lbl.gov/public/ets/target/catalogs/and detailed at https://desidatamodel.readthedocs.io).more » « less
An official website of the United States government
